Abstract
Due to their low cost, small size, and high-speed performance, biochips are often used in various bio-experiments. Compared with polymer-based biochips, glass-based substrates are less sensitive to heat and organic environments. This study presents a hybrid processing approach that uses laser micromachining (LMM) and precision glass molding (PGM) techniques to mass-produce glass-based biochips. A silicon carbide (SiC) mold with an outside diameter of 20 mm was used to hot emboss biochip channels measuring 200 μm wide and 185 μm deep. This study also identifies the optimal conditions for glass molding when processing soda-lime glass for biochip applications, and discusses the influence of the major processing parameters on biochip channel depth. This study uses the Taguchi method to assess the effects of several molding parameters on larger-the-better performance characteristics. The experiments in this study consider the effects of several molding parameters, such as molding temperature, pressing force, moving speed, temperature holding time, and vacuum environment, to achieve optimum characteristics for biochip channels. Orthogonal array analysis indicates that the optimal process parameters includes a 620 °C molding temperature, 1 kN pressing force, 5 mm/min moving speed, 60 s temperature holding time, and a vacuum-free environment. This study also investigates the surface roughness of glass biochip channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.