Abstract

Main results of glaciological and geophysical engineering surveys, conducted during three summer field seasons of 2013– 2016 (59–61st Russian Antarctic Expeditions – RAE) near the Russian Station Mirny (East Antarctica), are discussed in the paper. Objective of these works was to site and then to organize a new airfield for landing of medium-range aircrafts with ski landing gears. Investigations included aerial photography, GPR surveys (georadar profiling), ice core drilling, and installation of landmarks to measure velocity of the glacier motion. The GSSI ground-penetrating radars with the main frequencies of 270 MHz and 900 MHz were used. In addition, special explorations were conducted for detecting the englacial crevasses by means of remote-sensing methods. The GPR data allowed a revealing the boundary between snow-andfirn thickness and atmospheric ice. In the course of processing of 252 travel-time curves of the diffracted waves a kinematic model of the sub-surface part of the glacier has been constructed. It was found that the dielectric permittivity of the snowfirn thickness averages 2.43; similar value for the atmospheric ice amounts to 3.0. The GPR data made it possible to determine intraglacial (englacial) crevasses and to choose the most favorable field for the landing. On February 10, 2016, the first middle-range aircraft DC-3T (BT-67) had landed onto the new run-way near the station Mirny.

Highlights

  • special explorations were conducted for detecting the englacial crevasses by means of remote-sensing methods

  • a revealing the boundary between snow-andfirn thickness

  • It was found that the dielectric permittivity of the snowfirn thickness averages 2.43

Read more

Summary

Summary

Main results of glaciological and geophysical engineering surveys, conducted during three summer field seasons of 2013– 2016 (59–61st Russian Antarctic Expeditions – RAE) near the Russian Station Mirny (East Antarctica), are discussed in the paper. В летний полевой сезон 60‐й РАЭ (2014/15 г.) для более детального изучения намеченно го района были выполнены значительные по объёму инженерные изыскания и научные ис следования, которые предусматривали: 1) пло щадную георадарную съёмку масштаба 1:15 000; 2) керновое бурение; 3) аэрофотосъёмку [8, 9]; 4) установку вех. Для этого в сезон 60‐й и 61‐й РАЭ были выполнены опытно-методические работы на трещинах с различными гляциоморфологиче скими характеристиками. 2. Выполнение опытно-метеорологических работ на полигоне R2 (а–в) и временнóй георадарный раз рез, полученный на частоте 900 МГц (г): 1 – нулевая отметка; 2 – отражение, соответствующее положению трещины; 3 – мозаичный характер отражений внутри трещины; 4 – отражение, сформированное от куска плотного снега или фирна; 5 – предположительная граница между снежно-фирновой толщей и ледниковым льдом; 6 – дифрагированные волны, сформированные предположительно от участков стенок трещины, расположенной в ледниковом льду. Анало гичные работы выполнены 18 января 2016 г. в пункте R3 (см. рис. 1) на трещине шириной около 4,5 м, также сформированной в снежнофирновой толще

Кинематическая модель среды
Строение ледника в пределах лётного поля

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.