Abstract

Deglaciation in high mountain areas signifies the transition from glacial to periglacial conditioned landscapes. Due to the reduced melt rate of debris-covered glacier ice, these areas of the glacier may persist long after the surrounding glacier has melted, resulting in the formation of distinct post-glacial landforms. In this study, we examine the geomorphological evolution and potential future development of a 19,267 m3 ± 204 m3 rockfall from the permafrost-affected headwall on the low-elevated Zwieselbachferner in the Horlachtal, Stubai Alps, Austria. The analysis uses multi-epochal remote sensing data, including photogrammetrically and airborne laser scanning-derived digital elevation models, orthophotos, and satellite data, covering a period from the initial rockfall in 2003/2004 to 2022. The data reveals that the rockfall event resulted in the formation of a supraglacial debris layer of varying thickness, spanning an area of 15,920 m2. Subsequently, 13 further rockfalls ranging from 67 m3 ± 6 m3 to 4250 m3 ± 121 m3 were detected. The mean ice thickness of the debris-covered area only slightly decreased between 2006 and 2022, in contrast to the surrounding glacier, whose thickness and length have strongly decreased. This results in the formation of a steep front and flanks that become increasingly covered by debris redistribution. The study suggests that the glacier ice covered by rockfall-derived debris will remain as a periglacial landform of glacial origin after the complete melting of the surrounding glacier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call