Abstract

The treatments by Nye and Kamb of glacier sliding over a wavy bed with small slope, which assume the ice to be approximated by a Newtonian fluid of high viscosity, are complemented by the inclusion of the glacier depth and the inclination of the bed to the horizontal. The driving force of the motion, gravity, is therefore present in the flow equations and defines immediately the mean drag on the bed. A geothermal heal flux is also included in order to estimate its possible effect on the flow. A complex variable method is used to determine the velocity and temperature fields to second order in the bed slope. These fields satisfy the zero shear traction and pressure-melting-regelation conditions to the same order on the actual bed profile. It is the balance of the second-order term which determines explicitly the (zero order) basal-sliding velocity and surface velocity in terms of the geometry and physical properties of both ice and bed. An explicit solution is illustrated for a sinusoidal bed. and a simple criterion for the onset of cavitation is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.