Abstract

Abstract Large stratovolcanoes in the Cascade Range have high equilibrium-line altitudes that support glaciers whose Holocene and latest Pleistocene advances are amenable to dating. Glacier advances produced datable stratigraphic sequences in lateral moraines, which complement dating of end moraines. New mapping of glacial deposits on Mount Rainier using LIDAR and field observations supports a single latest Pleistocene or early Holocene advance. Rainier R tephra overlies deposits from this advance and could be as old as >11.6 ka; the advance could be of Younger Dryas age. Radiocarbon ages on wood interbedded between tills in the lateral moraines of Nisqually, Carbon, and Emmons glaciers and the South Tahoma glacier forefield suggest glacier advances between 200 and 550 CE, correlative with the First Millennium Advance in western Canada, and during the Little Ice Age (LIA) beginning as early as 1300 CE. These results resolve previous contradictory interpretations of Mount Rainier's glacial history and indicate that the original proposal of a single pre-Neoglacial cirque advance is correct, in contrast to a later interpretation of two advances of pre- and post-Younger Dryas age, respectively. Meanwhile, the occurrence of the pre-LIA Burroughs Mountain Advance, interpreted in previous work as occurring 3–2.5 ka, is questionable based on inherently ambiguous interpretations of tephra distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call