Abstract

AbstractGlacier outlines are mapped for the upper Bhagirathi and Saraswati/Alaknanda basins of the Garhwal Himalaya using Corona and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite images acquired in 1968 and 2006, respectively. A subset of glaciers was also mapped using Landsat TM images acquired in 1990. Glacier area decreased from 599.9 ± 15.6 km2(1968) to 572.5 ± 18.0 km2(2006), a loss of 4.6 ± 2.8%. Glaciers in the Saraswati/Alaknanda basin and upper Bhagirathi basin lost 18.4 ± 9.0 km2(5.7 ± 2.7%) and 9.0 ± 7.7 km2(3.3 ± 2.8%), respectively, from 1968 to 2006. Garhwal Himalayan glacier retreat rates are lower than previously reported. More recently (1990–2006), recession rates have increased. The number of glaciers in the study region increased from 82 in 1968 to 88 in 2006 due to fragmentation of glaciers. Smaller glaciers (<1 km2) lost 19.4 ± 2.5% (0.51 ± 0.07% a−1) of their ice, significantly more than for larger glaciers (>50 km2) which lost 2.8 ± 2.7% (0.074 ± 0.071 % a−1). From 1968 to 2006, the debris-covered glacier area increased by 17.8 ± 3.1% (0.46 ± 0.08% a−1) in the Saraswati/Alaknanda basin and 11.8 ± 3.0% (0.31 ± 0.08% a−1) in the upper Bhagirathi basin. Climate records from Mukhim (∼1900 m a.s.l.) and Bhojbasa (∼3780 m a.s.l.) meteorological stations were used to analyze climate conditions and trends, but the data are too limited to make firm conclusions regarding glacier–climate interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.