Abstract

Abstract. At present, the Arabian Sea has a permanent oxygen minimum zone (OMZ) at water depths between about 100 and 1200 m. Active denitrification in the upper part of the OMZ is recorded by enhanced δ15N values in the sediments. Sediment cores show a δ15N increase during the middle and late Holocene, which is contrary to the trend in the other two regions of water column denitrification in the eastern tropical North and South Pacific. We calculated composite sea surface temperature (SST) and δ15N ratios in time slices of 1000 years of the last 25 kyr to better understand the reasons for the establishment of the Arabian Sea OMZ and its response to changes in the Asian monsoon system. Low δ15N values of 4–7 ‰ during the last glacial maximum (LGM) and stadials (Younger Dryas and Heinrich events) suggest that denitrification was inactive or weak during Pleistocene cold phases, while warm interstadials (ISs) had elevated δ15N. Fast changes in upwelling intensities and OMZ ventilation from the Antarctic were responsible for these strong millennial-scale variations during the glacial. During the entire Holocene δ15N values > 6 ‰ indicate a relatively stable OMZ with enhanced denitrification. The OMZ develops parallel to the strengthening of the SW monsoon and monsoonal upwelling after the LGM. Despite the relatively stable climatic conditions of the Holocene, the δ15N records show regionally different trends in the Arabian Sea. In the upwelling areas in the western part of the basin, δ15N values are lower during the mid-Holocene (4.2–8.2 ka BP) compared to the late Holocene (< 4.2 ka BP) due to stronger ventilation of the OMZ during the period of the most intense southwest monsoonal upwelling. In contrast, δ15N values in the northern and eastern Arabian Sea rose during the last 8 kyr. The displacement of the core of the OMZ from the region of maximum productivity in the western Arabian Sea to its present position in the northeast was established during the middle and late Holocene. This was probably caused by (i) reduced ventilation due to a longer residence time of OMZ waters and (ii) augmented by rising oxygen consumption due to enhanced northeast-monsoon-driven biological productivity. This concurs with the results of the Kiel Climate Model, which show an increase in OMZ volume during the last 9 kyr related to the increasing age of the OMZ water mass.

Highlights

  • The marine nitrogen (N) cycle is highly dynamic due to the many chemical compounds of reactive N and their rapid transformation processes (Casciotti, 2016)

  • In order to (i) discern why N cycling in the Arabian Sea differs from the global trend and to (ii) better understand the response of the oxygen minimum zone (OMZ) to changes in the monsoon system we present a summary of δ15N records from the Arabian Sea including two new records from the Oman upwelling area

  • Based on these integrated δ15N and sea surface temperature (SST) records for different regions of the Arabian Sea we examine contrasts between glacial and Holocene conditions over the entire basin and contrasting regional evolution within the basin during the Holocene

Read more

Summary

Introduction

The marine nitrogen (N) cycle is highly dynamic due to the many chemical compounds of reactive N and their rapid transformation processes (Casciotti, 2016). Its feedback mechanisms are able to respond to external perturbations, possibly stabilizing the marine inventory of fixed N (Deutsch et al, 2004; Gruber, 2008; Sigman et al, 2009). The range of both oceanic N sources and sinks is still uncertain due to the poor data coverage of rate measurements and the large uncertainties of the water mass ages. New measurements have at the same time led to higher global estimates of N2 fixation (Grosskopf et al, 2012)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call