Abstract
SUMMARY Observations of sea-level change since the time of the last glacial maximum provide important constraints on the response of the Earth to changes in surface loading on time-scales of 103-104 years. This response is conveniently described by an effective elastic lithospheric thickness and effective viscosities for one or more mantle layers. Considerable trade-off between the parameters describing these layers can occur, and different combinations can give rise to comparable predictions of sea-level change. In particular, the trade-off between lithospheric thickness and upper-mantle viscosity can be important, and for any reasonable value for the lithospheric thickness a corresponding mantle viscosity structure can be found that gives a plausible comparison of sealevel predictions with observations. In particular, thin-lithosphere models will lead to low estimates for the upper-mantle viscosity, while thick-lithosphere models lead to high viscosity values. However, either solution may represent only a local minimum in the model parameter space, and may not correspond to the optimum solution. It becomes important, therefore, that in the inversion of observational data, a comprehensive search is conducted throughout the entire model-parameter space, to ensure that the solution identified does indeed correspond to the optimum solution. The sea-level data for the British Isles lend themselves well to such an inversion because of the relatively high quality of the data, the good geographic distribution of the data relative to the former ice sheet, and reasonable observational constraints on the dimensions of the former ice sheet and on its retreat. Furthermore, because of the contribution to the sea-level signal from the distant ice sheets, as well as from the melt-water load, the observational data base for the region also has some resolving power for the viscosity of the deeper mantle. The parameter space explored is defined by up to five mantle layers, the lithosphere of effective elastic thickness D,, and a series of upper-mantle layers, i = 2-4, extending down to depths of 200, 400 and 670 km, respectively, each of viscosity qi, and a lower-mantle layer of viscosity qlm extending down to the coremantle boundary. The range of parameters explored is 30 < D, I 120 km, 3 x lOI9 Iqi
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.