Abstract

Holistic study of glacial lakes and glacial lake outburst floods (GLOFs) in the strategically important China-Nepal transportation corridors is imperative for regional connectivity and disaster risk reduction. This study focuses on four China-Nepal transportation corridors, namely Chentang-Kimathanka, Zhangmu-Kodari, Keyrung-Kathmandu and Taklakot-Hilsa from east to west in the Himalayan region. Within a remote integrated framework, we present the latest high-resolution inventory of glacial lakes, assess their decadal spatio-temporal changes (1992–2022), identify potentially dangerous glacial lakes, and apply hydrodynamic model to assess downstream impacts of possible GLOFs along the study area. The results show 2688 glacial lakes (≥0.001 km2) with a total area of 116.10 ± 8.53 km2 over the study area in 2022. Glacial lakes exhibited spatiotemporal heterogeneity in expansion, with overall expansion of 32 % during 30 years. Keyrung-Kathmandu corridor, among others, was assessed with high GLOF susceptibility. Furthermore, hydrodynamic modeling of four highly dangerous lakes in each transportation area reveals that GLOFs have cross-border effects, impacting ~103 km of China-Nepal highway, 103 bridges, two major dry ports and 3301 buildings in both countries. Based on these findings, we emphasize the joint efforts of both countries for integrated disaster management for smooth connectivity between two countries and saving downstream population through joint cooperation from central to local government levels by initiating artificial lake lowering, developing cross-border early warning systems and cooperation. This study is valuable for presenting a synergistic study of glacial lakes and GLOF for informing decision- and policy-makers of both China and Nepal for a joint approach to disaster mitigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call