Abstract

The ongoing retreat of glaciers in the Hindu Kush-Himalaya (HKH) is associated with climate change. While deglaciation can cause a suite of impacts, one of the most visible and tangible impacts is the formation of glacial lakes. Some of these lakes can burst out causing large flash floods with the potential to cause significant damage to property, lives and livelihoods. At the moment, knowledge of the current glacial lake outburst flood (GLOF) risk in the HKH is incomplete, and a proper risk assessment is often circumvented. There is a need for a comprehensive GLOF risk assessment in order to support proper planning of mitigation and adaptation strategies in this context. In this paper we present a methodological approach for the GLOF risk assessment. The major part of the risk assessment is GLOF simulation and downstream impact assessment. The methodology was applied to the Sun Koshi river basin, a trans-boundary river basin between Tibet (China) and Nepal. A glacial lake outburst hydrograph was simulated using a dambreak model. The outburst flood was routed along the river using a hydrodynamic model to estimate the potential impact areas. A field survey was conducted to assess the potential damage caused by the GLOF. The peak outburst flood could be in the order of 7900 m3 s−1. The analysis shows that about 950 ha of land and a large amount of infrastructure are exposed to the GLOF. The economic risk due to the direct impact of a GLOF is estimated to be about US$197 million.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.