Abstract
During melting in the upper mantle the preferred partitioning of water into the melt will effectively dehydrate the solid residue. Linear extrapolation of laboratory experiments suggests that dehydration can produce a sharp viscosity contrast (increase) of a factor 500 across the dry solidus. In this study we show that the suggested magnitude of dehydration stiffening in a plume–ridge setting is incompatible with the present glacial isostatic adjustment (GIA) in Iceland. Using GPS observations of current GIA in Iceland, we find that the data are best fit by a viscosity contrast over the dry solidus in the range 0.5–3. A viscosity contrast higher than 10 requires a mantle viscosity below the dry solidus lower than 4-8×1018Pas, depending on the thickness of the dehydrated layer. A viscosity contrast of 100 or more demands a mantle viscosity of 1018Pas or less. However, we show here that a non-linear extrapolation of the laboratory data predicts a viscosity contrast as low as a factor 3–29, assuming conditions of constant strain rate to constant viscous dissipation rate. This is compatible with our GIA results and suggests that the plume–ridge interaction beneath Iceland is governed by a non-linear rheology and controlled by a combination of kinematic and dynamic boundary conditions rather than buoyant forces alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.