Abstract

Most glacial erosion models assume that erosion rates are proportional to ice-sliding velocity. While recent studies have shown that water plays a major role in modulating sliding velocities, the impact it might have on erosion rates is still unclear. Here we incorporate subglacial hydrology into a glacial erosion model that is based on a sliding rule. Our results explicitly highlight that adding subglacial hydrology has profound impacts on the temporal and spatial patterns of glacial erosion. First, it suggests that erosion might mainly occur during melting seasons, when subglacial water pressure is large and effective pressure is low (i.e., before the channels fully develop and reduce the water pressure at the ice bedrock interface), which promotes sliding and erosion. Second, the distribution of erosion is bimodal with a peak at the equilibrium line altitude and, as we demonstrate, enhanced erosion at much lower altitudes within the ablation area where water due to melting abounds. This has important implications because it explains why glacial erosion can simultaneously set a limit on the mean elevation of mountain ranges and carve large fjords or glacial lakes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.