Abstract

Mitochondrial dysfunction, particularly respiratory chain disruption, is often responsible for aging-related bone diseases. In this study, the protective effects of glabridin, an isoflavan isolated from licorice root, against pharmacological inhibition of the respiratory chain were studied using osteoblastic MC3T3-E1 cells treated with antimycin A, which inhibits complex III of the electron transport system. Glabridin restored mitochondrial membrane potential dissipation, ATP loss, inactivation of complex IV, intracellular calcium elevation, and cytochrome c release that was induced by antimycin A treatment. This compound also prevented cell death. These results imply that glabridin protects osteoblasts from antimycin A-induced cell death via improved mitochondrial function. Glabridin scavenged ROS and mitochondrial superoxide anions generated by antimycin A. In addition, glabridin prevented antimycin A-induced nitrotyrosine increase and thioredoxin reductase inactivation, suggesting that glabridin may be useful for protecting mitochondria against a burst of oxidative stress. Since phosphoinositide 3-kinase (PI3K) and cAMP-response element-binding protein (CREB) signaling is known to be pro-survival, we determined whether PI3K and CREB activation is associated with the cytoprotective effects of glabridin in the MC3T3-E1 cells. Glabridin restored antimycin A-induced inactivation of PI3K and CREB, suggesting that PI3K and CREB-dependent pathways may be involved in glabridin-induced cytoprotective responses. Our study demonstrates that glabridin reduces mitochondrial dysfunction induced during aging, and could significantly prevent osteoblast damage in osteoporotic patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.