Abstract

The Global Navigation Satellite System (GNSS) allows computing the Position, Velocity and Time (PVT) of users equipped with appropriate hardware (i.e. an antenna and a receiver) and software. The latter estimates the PVT from the ranging measurements and ephemeris transmitted by the GNSS satellites in frequencies of the L band. The research group of Astronomy and Geomatics (gAGE) at the Universitat Politecnica de Catalunya (UPC) has been developing the GNSS LABoratory (gLAB) tool suite since 2009, in the context of the European Space Agency (ESA) educational program on satellite navigation (EDUNAV). gLAB is a multi-purpose software capable of determining the PVT in several modes: stand-alone (e.g. as a smartphone or car navigator), differential (e.g. surveying equipment or precise farming), and augmented with integrity (e.g. civil aviation or safety of life applications). gLAB has been designed for two main sets of users and functions. The first one is to educate University students and professionals in the art and science of GNSS data processing. This includes newcomers to the GNSS field that highly appreciate the Graphical User Interface (GUI), the default templates with the necessary configuration or the messages with warnings and errors. The second group of users are those with previous experience on GNSS. Those are interested into a high computation speed, high-accuracy positioning, batch processing and access to the intermediate computation steps. In the present contribution, we present some examples in which gLAB serves as an education platform. The data sets are actual GNSS measurements collected by the publicly available International GNSS Service (IGS), together with other IGS products such as the satellite orbits and clocks broadcast in the navigation message. The proposed methodology and procedures are tailored to understand the effects of different error components in both the Signal in Space (SIS) and the position domain, by activating or deactivating different modeling terms in gLAB. The results illustrate some examples of how the PVT can be enhanced or deteriorated when using different processing strategies or propagation effects present in the GNSS signals traversing the atmosphere, among others. We conclude that gLAB is a useful tool to learn GNSS data processing or to expand any prior knowledge

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call