Abstract

Location-based application services and location privacy protection solutions are often required for the storage, management, and efficient retrieval of large amounts of geolocation data for specific locations or location intervals. We design a hierarchical tree-like organization structure, GL-Tree, which enables the storage, management, and retrieval of massive location data and satisfies the user's location-hiding requirements. We first use Geohash encoding to convert the two-dimensional geospatial coordinates of locations into one-dimensional strings and construct the GL-Tree based on the Geohash encoding principle. We gradually reduce the location intervals by extending the length of the Geohash code to achieve geospatial grid division and spatial approximation of user locations. The hierarchical tree structure of GL-Tree reflects the correspondence between Geohash codes and geographic intervals. Users and their location relationships are recorded in the leaf nodes at each level of the hierarchical GL-Tree. In top-down order, along the GL-Tree, efficient storage and retrieval of location sets for specified locations and specified intervals can be achieved. We conducted experimental tests on the Gowalla public dataset and compared the performance of the B+ tree, R tree, and GL-Tree in terms of time consumption in three aspects: tree construction, location insertion, and location retrieval, and the results show that GL-Tree has good performance in terms of time consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.