Abstract

AbstractLet A be a domain over an algebraically closed field with Gelfand–Kirillov dimension in the interval [2,3). We prove that if A has two locally nilpotent skew derivations satisfying some natural conditions, then A must be one of five algebras. All five algebras are Noetherian, finitely generated, and have Gelfand–Kirillov dimension equal to 2. We also obtain some results comparing the Gelfand–Kirillov dimension of an algebra to its subring of invariants under a locally nilpotent skew derivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.