Abstract

Principal component analysis (PCA) is one of the most commonly used tools in the analysis of ecological data. This method reduces the effective dimensionality of a multivariate data set by producing linear combinations of the original variables (i.e., components) that summarize the predominant patterns in the data. In order to provide meaningful interpretations for principal components, it is important to determine which variables are associated with particular components. Some data analysts incorrectly test the statistical significance of the correlation between original variables and multivariate scores using standard statistical tables. Others interpret eigenvector coefficients larger than an arbitrary absolute value (e.g., 0.50). Resampling, randomization techniques, and parallel analysis have been applied in a few cases. In this study, we compared the performance of a variety of approaches for assessing the significance of eigenvector coefficients in terms of type I error rates and power. Two novel approaches based on the broken-stick model were also evaluated. We used a variety of simulated scenarios to examine the influence of the number of real dimensions in the data; unique versus complex variables; the magnitude of eigenvector coefficients; and the number of variables associated with a particular dimension. Our results revealed that bootstrap confidence intervals and a modified bootstrap confidence interval for the broken-stick model proved to be the most reliable techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.