Abstract
In previous work, we have introduced a program aimed at studying the birational geometry of locally symmetric varieties of Type IV associated to moduli of certain projective varieties of K3 type. In particular, a concrete goal of our program is to understand the relationship between GIT and Baily-Borel compactifications for quartic K3 surfaces, K3's which are double covers of a smooth quadric surface, and double EPW sextics. In our first paper [36], based on arithmetic considerations, we have given conjectural decompositions into simple birational transformations of the period maps from the GIT moduli spaces mentioned above to the corresponding Baily-Borel compactifications. In our second paper [35] we studied the case of quartic K3's; we have given geometric meaning to this decomposition and we have partially verified our conjectures. Here, we give a full proof of the conjectures in [36] for the moduli space of K3's which are double covers of a smooth quadric surface. The main new tool here is VGIT for (2,4) complete intersection curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.