Abstract

The aim of this paper is to test with genomic in situ hybridization the genomic affinities between maize and its putative progenitor Zea mays subsp. parviglumis. Blocking procedures were applied for the purpose of improving discrimination among chromosome regions. Unlabeled genomic DNA from Z. mays subsp. parviglumis as a blocking agent and labeled genomic DNA from maize were hybridized on maize chromosomes. On the other hand, mitotic metaphases from Z. mays subsp. parviglumis were blocked with unlabeled genomic DNA of maize and hybridized with labeled genomic DNA from Z. mays subsp. parviglumis. Both experiments showed that either maize or Z. mays subsp. parviglumis chromosomes have their own unique sequences. This means an unexpected degree of divergence if Z. mays subsp. parviglumis is the only progenitor of maize, a result that is discussed in relation to our previous genomic in situ hybridization observations and to the different scenarios proposed about the origin of maize.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.