Abstract
The outbreak of the COVID-19 pandemic is an unprecedented shock throughout the world which leads to generate a massive social, human, and economic crisis. However, there is a lack of research on geographic modeling of COVID-19 as well as identification of contributory factors affecting the COVID-19 in the context of developing countries. To fulfill the gap, this study aimed to identify the potential factors affecting the COVID-19 incidence rates at the district-level in Bangladesh using spatial regression model (SRM). Therefore, data related to 32 demographic, economic, weather, built environment, health, and facilities related factors were collected and analyzed to explain the spatial variability of this disease incidence. Three global (Ordinary least squares (OLS), spatial lag model (SLM) and spatial error model (SEM)) and one local (geographically weighted regression (GWR)) SRMs were developed in this study. The results of the models showed that four factors significantly affected the COVID-19 incidence rates in Bangladesh. Those four factors are urban population percentage, monthly consumption, number of health workers, and distance from the capital. Among the four developed models, the GWR model performed the best in explaining the variation of COVID-19 incidence rates across Bangladesh with a R square value of 78.6%. Findings from this research offer a better insight into the COVID-19 situation and would help to develop policies aimed to prevent the future epidemic crisis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.