Abstract

The energy consumption of air conditioning systems in large spaces is a concern due to inefficiencies caused by the high ceiling. This paper presents the Green aIr-distribution System (GIS) retrofitting technique as a solution to reduce energy consumption and optimize thermal comfort in a large Hong Kong sports center to achieve carbon neutrality. A comparison is made between the existing air distribution system with ceiling supply and return as baseline model and the GIS with occupied wall supply and ceiling return as retrofit models regarding ventilation performance, thermal comfort, and energy aspects. Computational fluid dynamics (CFD) is employed to analyze the average operative temperature, airspeed, and other thermal comfort parameters. The findings demonstrate that implementing the GIS in the large sports center allows for a 1.5 °C increase in the supply temperature without significantly compromising thermal comfort. The algorithm for developing GIS for the large space application is also discussed. Additionally, the GIS model exhibits notable improvements in ventilation factors, such as Local Mean Age (LMA), Local air change index (LACI), and Air Distribution Performance Index (ADPI), resulting in improved air quality and reduced energy use within the occupied space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call