Abstract

This research presents a 3D geographic information systems (GIS) modeling approach at a fine spatiotemporal resolution to assess solar potential for the development of smart net-zero energy communities. It is important to be able to accurately identify the key areas on the facades and rooftops of buildings that receive maximum solar radiation, in order to prevent losses in solar gain due to obstructions from surrounding buildings and topographic features. A model was created in ArcGIS, in order to efficiently compute and iterate the hourly solar modeling and mapping process over a simulated year. The methodology was tested on a case study area located in southern Ontario, where two different 3D models of the site plan were analyzed. The accuracy of the work depends on the resolution and sky size of the input model. Future work is needed in order to create an efficient iterative function to speed the extraction process of the pixelated solar radiation data.

Highlights

  • Buildings that are able to self-sustain themselves and use solar energy that is collected on-site are becoming an emerging trend

  • A 3D geographic information systems (GIS) method was used in this paper to develop an efficient method for urban solar mapping applications on an hourly basis in order to determine locations with maximum solar radiation potential, which would be ideal for PV installations

  • A model was created in ESRI ArcGIS 10.2, in order to efficiently compute and iterate the hourly solar mapping process over a simulated year

Read more

Summary

Introduction

Buildings that are able to self-sustain themselves and use solar energy that is collected on-site are becoming an emerging trend. The solar optimization process refers to a two-stage process that deals with the optimization of form in order to: (a) capture as much solar radiation as possible on the main surfaces of the buildings; and (b) to utilize the maximum amount of captured solar energy as daylight, and/or to be converted into heat (thermal collector), electricity (PV), or both electricity and thermal energy (PV/T) [2] Through this process, new buildings and communities could potentially have the opportunity to be self-sustaining, which could help alleviate the huge demands of electricity currently required from the already strained transmission and electricity distribution infrastructure; something that Ontario is currently suffering from [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.