Abstract

Nitrogen (N) is the most widely used fertilizer nutrient, and its application has increased substantially in recent decades in China. N loss through leaching has been recognized as one of the most common agricultural sources of groundwater contamination. Thus, prediction of N leaching from cropland is crucial for preventing groundwater pollution. This paper quantifies nitrogen leaching from China’s croplands, identifies its spatial distribution under current cropping systems at national scale, and finally puts forward some policies or strategies to reduce rates of N leaching. A computer process simulation model of carbon and nitrogen biogeochemistry in agro-ecosystems (DNDC) was applied to predict nitrogen leaching in the soil layer of agricultural ecosystems at national scale. Data on climate, soil properties, cropping systems, acreage, and management practices at county scale were collected from various sources and integrated into a spatial GIS database to run the model. The total amount of N-leaching was predicted at 4.57 million t N/year, which is equivalent to 48 kg N per ha cropland in 1998. The spatial distribution of N leaching in China showed a sharp discrepancy between the northern and southern counties due to the differences in climatic conditions, soil properties, as well as farm management practices. The study also suggests that applying management alternatives, such as proper fertilizer, crop, water and soil management, could be efficient means for decreasing N leaching rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.