Abstract
Siting a linear facility such as a highway or a pipeline often requires a preliminary study in which one or several corridors are identified. Here we construct corridors as a collection of adjacent polygons specifying a ‘path’ from origin s to destination t. Formally, we make use of a graph, called the connectivity graph, in which vertices correspond to polygons and edges to adjacent polygons. Within this formal representation, a corridor corresponds to an s to t path in the connectivity graph. The corridors are evaluated on two criteria: (1) a quantitative criterion measuring the length of the corridor, and (2) a qualitative criterion measuring the quality of the corridor with respect to the suitability of crossing its component polygons. We first introduce a three-phase approach based on a coupling between a geographical information system (GIS) and multicriteria evaluation and devoted to handling biobjective corridor siting problems. Then, the proposed approach is validated through an example of a real-world application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.