Abstract

In general, the elaboration of the synthesis of water quality in Romania is based on the processing of a large volume of information coming from primary analytical data collected with a constant frequency by the organisms with a specific role in water quality monitoring. This study proposes a novel methodology for multi-criteria analysis aiming to evaluate the degradation state of lake ecosystems. The cornerstone of the newly presented methodology is a geographic information system (GIS) automated tool, involving the assessment of potential degradation sources affecting the watershed that supply the lakes with water. The methodology was tested by performing an analysis on 30 lakes in Romania. The lakes belong to different geographical areas, owing various natural specific conditions and were selected to fit to various types and specific local conditions. The calculation of the WRASTIC-HI (Wastewater–Recreation–Agriculture–Size–Transportation–Industry–Cover–Hazard Index) revealed that, out of 30 lake ecosystems selected as the case study, two lakes were fully degraded, 24 lakes were semi-degraded, and four were in a natural state. The four lakes characterised by a natural state are located in mountainous regions or in the Danube Delta. The results obtained on the selected lakes proved that the proposed index calculation corresponded in all case studies to the real field situation, highlighting thus the accuracy of the assessing process and increased advantages of the assessment’s automation.

Highlights

  • Terrestrial and aquatic ecosystems offer a series of services which contribute to human well-being [1], defined as a series of benefits obtained from these natural ecosystems [2,3]and refer to provisioning services, regulating services, cultural services and supporting services [2]

  • Mapping of the lake ecosystems was done in accordance with the classification system of habitats European Nature Information System (EUNIS) level 2, in which lake ecosystem is considered to be a water surface area [25] formed by two major components: pelagic area and seaside area

  • The class of agricultural activity identifies the existence of land intended for agriculture in the region of river basins that supply the lake (Figure 5)

Read more

Summary

Introduction

Terrestrial and aquatic ecosystems offer a series of services which contribute to human well-being [1], defined as a series of benefits obtained from these natural ecosystems [2,3]and refer to provisioning services, regulating services, cultural services and supporting services [2]. The main indirect causes of degradation of aquatic ecosystems, including lake ecosystems are represented by the increase of population and economic development [7], with direct effects on species and reduction of populations of species. These two drivers are directly linked to the development of infrastructure, change of land cover, overexploitation and the introduction of invasive allogeneic species [2,8,9], drainage and irrigation systems, and chemical pollutants [10,11,12]. The aquatic ecosystems, including lakes ecosystems, are affected by climate change, the seasonal thermal stratification of lakes being modified over time [13,14]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call