Abstract

In this study, the baseline period (1960–1990) precipitation simulation of regional climate model PRECIS is evaluated and downscaled on a monthly basis for northwestern Himalayan mountains and upper Indus plains of Pakistan. Different interpolation models in GIS environment are used to generate fine scale (250 × 250 m2) precipitation surfaces from PRECIS precipitation data. Results show that the multivariate extension model of ordinary kriging that uses elevation as secondary data is the best model especially for monsoon months. Model results are further compared with observations from 25 meteorological stations in the study area. Modeled data show overall good correlation with observations confirming the ability of PRECIS to capture major precipitation features in the region. Results for low and erratic precipitation months, September and October, are however showing poor correlation with observations. During monsoon months (June, July, August) precipitation pattern is different from the rest of the months. It increases from south to north, but during monsoon maximum precipitation is in the southern regions of the Himalayas, and extreme northern areas receive very less precipitation. Modeled precipitation toward the end of the twenty-first century under A2 and B2 scenarios show overall decrease during winter and increase in spring and monsoon in the study area. Spatially, both scenarios show similar pattern but with varying magnitude. In monsoon, the Himalayan southern regions will have more precipitation, whereas northern areas and southern plains will face decrease in precipitation. Western and south western areas will suffer from less precipitation throughout the year except peak monsoon months. T test results also show that changes in monthly precipitation over the study area are significant except for July, August, and December. Result of this study provide reliable basis for further climate change impact studies on various resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.