Abstract

A geographical information system (GIS) assisted approach that couples a groundwater flow model and an inverse geochemical model is presented to quantify the phase mole transfers between two points on the flow path within a groundwater system. It is used to investigate the plausible phase transfers in the unconfined aquifer of Mehsana district of Gujarat State, India. X-ray diffraction analysis of soil samples is carried out for mineral characterization. The groundwater flow field is simulated using MODFLOW and flow paths used for inverse geochemical modeling are traced using PMPATH, a particle tracking algorithm. The plausible phase mole transfers in the flow path are quantified using PHREEQC geochemical code. The different scenarios generated by inverse modeling routine are used as input to the geochemical model and simulation runs are taken as forward models. The obtained results are compared to the target solution chemistry by using the square of the Pearson product moment correlation coefficient. Results reveal that the groundwater is undersaturated with anhydrite, carbon dioxide (gas), fluorite, gypsum, halite, jarosite-K, and siderite. It is oversaturated with aragonite, calcite, dolomite, ferrihydrite, goethite, and hematite. Results further reveal that calcite is precipitating, while dolomite, gypsum, carbon dioxide, and fluorite are dissolving together with ion exchange in the flow path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.