Abstract
Initially, geographical information systems (GIS) concentrated on two issues: automated map making, and facilitating the comparison of data on thematic maps. The first required high quality graphics, vector data models and powerful data bases, the second is based on grid cells that can be manipulated by suites of mathematical operators collectively termed “map algebra”. Both kinds of GIS are widely available and are taught in many universities and technical colleges. After more than 20 years of development, most standard GIS provide both kinds of functionality and good quality graphic display, but until recently they have not included the methods of statistics and geostatistics as tools for spatial analysis. Recently, standard statistical packages have been linked to GIS for both exploratory data analysis and statistical analysis and hypothesis testing. Standard statistical packages include methods for the analysis of random samples of cases or objects that are not necessarily co-located in space—if the results of statistical analysis display a spatial pattern then that is because the underlying data also share that pattern. Geostatistics addresses the need to make predictions of sampled attributes (i.e., maps) at unsampled locations from sparse, often expensive data. To make up for lack of hard data geostatistics has concentrated on the development of powerful methods based on stochastic theory. Though there have been recent moves to incorporate ancillary data in geostatistical analyses, insufficient attention has been paid to using modern methods of data display for the visualization of results. GIS can serve geostatistics by aiding geo-registration of data, facilitating spatial exploratory data analysis, providing a spatial context for interpolation and conditional simulation, as well as providing easy-to-use and effective tools for data display and visualization. The value of geostatistics for GIS lies in the provision of reliable interpolation methods with known errors, methods of upscaling and generalization, and for supplying multiple realizations of spatial patterns that can be used in environmental modeling. These stochastic methods are improving understanding of how errors in models of spatial processes accrue from errors in data or incompleteness in the structure of the models. New developments in GIS, based on ideas taken from map algebra, cellular automata and image analysis are providing high level programming languages for modeling dynamic processes such as erosion or the development of alluvial fans and deltas. Research has demonstrated that these models need stochastic inputs to yield realistic results. Non-stochastic tools such as fuzzy subsets have been shown to be useful for spatial analysis when probabilistic approaches are inappropriate or impossible. The conclusion is that in spite of differences in history and approach, the linkage of GIS, statistics and geostatistics provides a powerful, and complementary suite of tools for spatial analysis in the agricultural, earth and environmental sciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.