Abstract

Recently high grade pipeline project have been planned in hostile environment like landslide in mountain area, liquefaction in reclaimed land or the frost heave in Polar Regions. Geohazards bring large scale ground deformation and effect on the varied pipeline to cause large deformation. Therefore, strain capacity is important for the pipeline and strain based design is also needed to keep gas transportation project in safe. High grade steel pipe for linepipe tends to have higher yield to tensile (Y/T) ratio and it has been investigated that the lower Y/T ratio of the material improves strain capacity in buckling and tensile limit state. In onshore pipeline project, pipe usually transported in 12 or 18m each and jointed in the field. Girth weld (GW) is indispensable so strength matching of girth weld towards pipe body is important. In this study strain capacity of Grade X70 high strain pipes with size of 36″ OD and 23mm WT was investigated with two types of experiments, which are full scale pipe bending tests and curved wide plate tests. The length of the specimen of full scale bending tests were approximately 8m and girth weld was made in the middle of joint length. A fixed internal pressure was applied during the bending test. Actual pipe situation in work was simulated and both circumferential and longitudinal stress occurred in this test. Test pipes were cut and welded, GTAW in first two layer and then finished by GMAW. In one pipe, YS-TS over-matching girth weld (OVM) joint was prepared considering the pipe body grade. For the other pipe, intentionally under-matching girth weld (UDM) joint was prepared. After the girth welding, elliptical EDM notch were installed in the GW HAZ as simulated weld defect. In both pipe bending tests, the buckling occurred in the pipe body at approximately 300mm apart from the GW and after that, deformation concentrated to buckling wrinkle. Test pipe breaking locations were different in the two tests. In OVM, tensile rupture occurred in pipe body on the backside of buckling wrinkle. In UDM, tensile rupture occurred from notch in the HAZ. In CWP test, breaking location was the HAZ notch. There were significant differences in CTOD growth in HAZ notch in these tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.