Abstract

Current seismic design practice related to integral bridge girder-to-cap beam connections allows little or no lateral seismic load to be distributed beyond the girders immediately adjacent to the column. However, distribution results from several large-scale tests have shown that the distribution of column seismic moment typically engages all the girders. An approach utilizing simple stiffness models to predict distribution in integral bridge structures is presented in detail; distribution predictions based on grillage analyses also are compared. The experimental results and the analytical results from the stiffness and grillage models show that current design methods related to vertical load distribution are sufficiently accurate. However, when applied to the distribution of lateral load, similarly obtained results reveal that current design practice does not appropriately account for the amount of load that is distributed beyond the girders adjacent to the column to the nonadjacent girders. The current practice leads to excessive girder-to-cap connection reinforcement, increased girder depth, unnecessarily high seismic mass, and increased construction cost. Finally, this paper makes recommendations for more appropriate distribution of seismic lateral load in integral bridge superstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.