Abstract

Pleiotropic G proteins are essential for the action of hormones and neurotransmitters and are activated by stimulation of G protein-coupled receptors (GPCR), which initiates heterotrimer dissociation of the G protein, exchange of GDP for GTP on its Galpha subunit and activation of effector proteins. Regulator of G protein signaling (RGS) proteins regulate this cascade and can be recruited to the membrane upon GPCR activation. Direct functional interaction between RGS and GPCR has been hypothesized. We show that recruitment of GAIP (RGS19) by the dopamine D2 receptor (D2R), a GPCR, required the scaffold protein GIPC (GAIP-interacting protein, C terminus) and that all three were coexpressed in neurons and neuroendocrine cells. Dynamic translocation of GAIP to the plasma membrane and coassembly in a protein complex in which GIPC was a required component was dictated by D2R activation and physical interactions. In addition, two different D2R-mediated responses were regulated by the GTPase activity of GAIP at the level of the G protein coupling in a GIPC-dependent manner. Since GIPC exclusively interacted with GAIP and selectively with subsets of GPCR, this mechanism may serve to sort GPCR signaling in cells that usually express a large repertoire of GPCRs, G proteins, and RGS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.