Abstract

We recently established a new plasma peptidomic technique and comprehensively identified a large number of low-molecular weight and low-abundance native peptides using a single drop of human plasma. To discover a novel polypeptide that potently modulates the cardiovascular system, we performed a bioinformatics analysis of the large-scale identification results, sequentially synthesized the selected peptide sequences, tested their biological activities, and identified a 30-amino-acid proatherogenic peptide, GIP_HUMAN[22–51], as a potent proatherosclerotic peptide hormone. GIP_HUMAN[22–51] has a common precursor with the glucose-dependent insulinotropic polypeptide (GIP) and is located immediately N-terminal to GIP. Chronic infusion of GIP_HUMAN[22–51] into ApoE−/− mice accelerated the development of aortic atherosclerotic lesions, which were inhibited by co-infusions with an anti-GIP_HUMAN[22–51] antibody. GIP_HUMAN[22–51] increased the serum concentrations of many inflammatory and proatherogenic proteins, whereas neutralising antibodies reduced their levels. GIP_HUMAN[22–51] induced IκB-α degradation and nuclear translocation of NF-κB in human vascular endothelial cells and macrophages. Immunoreactive GIP_HUMAN[22–51] was detected in human tissues but there was no colocalization with the GIP. The plasma GIP_HUMAN[22–51] concentration in healthy humans determined using a stable-isotope tagged peptide was approximately 0.6 nM. This study discovered a novel endogenous proatherogenic peptide by using a human plasma native peptidomic resource.

Highlights

  • The glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino-acid polypeptide secreted by enteroendocrine K-cells1 that potentiates the glucose-dependent release of insulin from pancreatic β ­cells2,3 and exerts extrapancreatic glucoregulatory activities through its systemic r­ eceptors4

  • Our initial peptidomic sequencing data acquired from 189 analyses using liquid chromatography tandem mass spectrometry (LC–MS/MS) were searched against the SwissProt_2015_02.fasta database with two different data processing pipelines and search engines: (1) the Mascot Distiller deconvoluted the MS/MS spectra and performed an MS/MS ion search, and (2) the PEAKS Studio used a PTM algorism and performed a database search based on a de novo sequencing

  • These analyses were conducted until the beginning of 2018 and after excluding peptides derived from the keratin protein family, they resulted in the identification of 18,552 polypeptide sequences with a peptide identification false discovery rate (FDR) of 1%

Read more

Summary

Introduction

The glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino-acid polypeptide secreted by enteroendocrine K-cells that potentiates the glucose-dependent release of insulin from pancreatic β ­cells and exerts extrapancreatic glucoregulatory activities through its systemic r­ eceptors. The presence and exact amino acid sequence of such endogenously processed peptides in human plasma remain largely unknown because of the technical difficulties associated with plasma peptidomic analysis. This putative N-terminal peptide has no known biological activity. We previously identified novel bioactive peptides by predicting putative endogenous peptide sequences from the bioinformatic analysis of human cDNA database information, explored biological activities of the synthesised peptides, and confirmed their immunoreactive presence in human plasma and t­ issues. The present study aimed to use this plasma native peptidomic resource to identify a novel plasma native polypeptide hormone that may be involved in the pathophysiology of vascular diseases

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.