Abstract

A wide range of quasi-one-dimensional materials, consisting of weakly coupled chains, undergo three-dimensional phase transitions that can be described by a complex order parameter. A Ginzburg-Landau theory is derived for such a transition. It is shown that intrachain fluctuations in the order parameter play a crucial role and must be treated exactly. The effect of these fluctuations is determined by a single dimensionless parameter. The three-dimensional transition temperature, the associated specific heat jump, coherence lengths, and width of the critical region, are computed assuming that the single chain Ginzburg-Landau coefficients are independent of temperature. The width of the critical region, estimated from the Ginzburg criterion, is virtually parameter independent, being about 5-8 per cent of the transition temperature. To appear in {\it Physical Review B,} March 1, 1995.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call