Abstract
A one-dimensional dynamic Ginzburg-Landau theory of the martensitic phase transition in shape-memory alloys is established. The nonlinear equations of motion yield solitary wave solutions of kink and of soliton type. The kink solutions which cannot move without external force represent single domain walls either between austenite and martensite or between two martensite variants. The soliton solutions correspond to a matrix of austenite or of martensite containing a moving sheet of the other phase. The velocity of the solitons depends on their amplitude. In the static case they reduce to the critical nucleus. The energy of each type of solitary waves is calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.