Abstract

The vortex distributions and dynamics in superconductors with triangular and honeycomb pinning arrays are investigated by numerical simulation of the two- dimensional (2-D) time-dependent Ginzburg–Landau equations. Periodic boundary conditions are implemented through specific gauge transformations under lattice translations. We model the pinning sites as holes. The simulation results at different magnetic fields are presented. For film with regular triangular pinning array, the vortices are all captured within the holes for a wide range of magnetic fields. For film with regular honeycomb pinning array, the interstitial vortices appear at relatively low magnetic fields. With an increase of magnetic field, the new vortices may enter the holes again and keep the number of vortices at the interstitial positions unchanged. These results confirm our explanations of the experimental results we obtained earlier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.