Abstract

If f is a Morse function on a smooth manifold M there exists a homotopy equivalence from M to a CW complex X such that the critical points of f with index λ are in a one-one correspondence to the λ-cells of X. In the equivariant case, a similar result holds for a special type of invariant Morse functions. In this paper we prove the existence of such special invariant Morse functions on compact smooth G-manifolds. As a consequence, any compact smooth G-manifold is homotopy equivalent to a G-CW complex. Other applications deal with the Euler number of the fixed point set and Morse inequalities in equivariant homology theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.