Abstract
AimIn the present study we aimed to investigate the neuroprotective effect of ginsenoside Rg1 (GRg1) on neuronal damage examined in an adopted in vitro inflammatory neurodegeneration model and the involvement of p38 MAPK signal pathway. Main methodsThe supernatant from Aβ1–40‐stimulated THP-1 monocytes was used as culture medium for SK-N-SH neuroblastoma cells which was used as target neuronal cells. The cell viability of SK-N-SH cells was assessed by detecting lactate dehydrogenase (LDH) leakage; the content of pro-inflammatory cytokine was measured by radioimmunoassay; the expressions of tau phosphorylation, p-38 and synaptophysin (SYN) were evaluated by western blot assay. The microtubule associated protein-2 (MAP-2) expression was confirmed by immunostaining. Key findingsOur results showed that incubation of the supernatant from Aβ1–40‐stimulated THP-1 cells with SK-N-SH neuroblastoma cells for 24h significantly increased LDH leakage, tau and p-38 phosphorylation in SK-N-SH cells with increased interleukin (IL)-1β release into the supernatant of THP-1 cells. Pretreatment of THP-1 cells with GRg1 (50, 100 and 150μM) for 30min before Aβ1–40‐stimulation inhibited THP-1 cell-mediated Aβ neurotoxicity towards SK-N-SH neuroblastoma and also decreased IL-1β release into THP-1 supernatant dose-dependently. An inhibitor of p38 MAPK, SB203580, had the same effect. SignificanceThese results suggested that activation of the p38 cell signal pathway may be involved in monocyte-mediated Aβ neurotoxicity towards SK-N-SH cells. Data obtained from this study demonstrated that GRg1 represented a potential treatment strategy for Alzheimer's disease (AD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.