Abstract

Nonalcoholic fatty liver disease (NAFLD) is one of the common diseases in the world, and it can progress from simple lipid accumulation to sustained inflammation. The present study was designed to investigate the effects and underlying mechanisms of ginsenoside Rg1 (G-Rg1) treatment on NAFLD in vitro. HepG2 cells were treated with palmitic acid (PA) to induce steatosis and inflammation and then successively incubated with G-Rg1. Lipids accumulation was analyzed by Oil Red O staining and intracellular triglyceride (TG) quantification. Inflammatory conditions were examined by quantifying the levels of cell supernatant alanine transaminase/aspartate aminotransferase (ALT/AST) and secretory proinflammatory cytokines, including IL-1β, IL-6, and TNF-α in the cell supernatants. Quantitative RT-PCR and western blotting were used to measure the expressions of genes and proteins associated with lipogenic synthesis and inflammation, including AMP-activated protein kinase (AMPK) and nuclear factor-kappa B (NF-κB) pathways. HepG2 cells were pretreated with an AMPK inhibitor; then, Oil Red O staining and TG quantification were performed to study the lipid deposition. Phospho-AMPK (Thr172) (p-AMPK) and phospho-acetyl-CoA carboxylase (Ser79) (p-ACCα) were quantified by immunoblotting. Immunofluorescence was performed to demonstrate the nuclear translocation of NF-κB P65. The present study showed that PA markedly increased the intracellular lipid droplets accumulation and TG levels, but decreased AMPK phosphorylation and the expressions of its downstream lipogenic genes. However, G-Rg1 alleviated hepatic steatosis and reduced the intracellular TG content; these changes were accompanied by the activation of the AMPK pathway. In addition, blocking AMPK by using the AMPK inhibitor markedly abolished the G-Rg1-mediated protection against PA-induced lipid deposition in HepG2 cells. Furthermore, G-Rg1 reduced the ALT/AST levels and proinflammatory cytokines release, which were all enhanced by PA. These effects were correlated with the inactivation of the NF-κB pathway and translocation of P65 from the cytoplasm to the nucleus. Overall, these results suggest that G-Rg1 effectively ameliorates hepatic steatosis and inflammation, which might be associated with the AMPK/NF-κB pathway.

Highlights

  • Nonalcoholic fatty liver disease (NAFLD) is a serious public health issue in well-off countries with a prevalence of 25%-46.2%; it is related to hyperlipidemia, type-2 diabetes, cardiovascular diseases, and metabolic syndrome [1, 2]

  • The cells were seeded in six-well plates at the density of 1.2×106 cells/well and were allowed to adhere overnight; they were cultured with fatty-acid-free bovine serum albumin (BSA) (Solarbio, Beijing, China) or palmitic acid (PA)

  • Before conducting the main experiment, we evaluated the effect of PA and ginsenoside Rg1 (G-Rg1) on HepG2 cell viability using the Cell Counting Kit-8 Assay (CCK-8) assay

Read more

Summary

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a serious public health issue in well-off countries with a prevalence of 25%-46.2%; it is related to hyperlipidemia, type-2 diabetes, cardiovascular diseases, and metabolic syndrome [1, 2]. This liver disease follows a series of steps, extending from hepatic steatosis ( the accumulation of triglycerides (TGs) in the liver), steatohepatitis (steatosis with inflammation), and fibrosis to cirrhosis and, hepatocellular carcinoma [3]. Aggregation of lipids in the cytoplasm of liver cells (first hit) brings about a series of cytotoxic events (second hit), resulting in liver inflammation [4].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call