Abstract

Chronic social defeat stress (CSDS) is an ethologically relevant psychosocial stress animal model and has been widely used in depression studies. Ginsenoside Rg1 (Rg1) is the major active ingredients of ginseng with low toxicity and neuroprotective effects. The present study aims to investigate the antidepressant effects of Rg1 in CSDS mice and explore its molecular mechanism. We found that Rg1 (20 or 40 mg/kg, i.g.) administration significantly alleviated depressive-like behaviors caused by 4-week CSDS exposure, as measured by social interaction test and sucrose preference test, tail suspension test and forced swim test. Additionally, Rg1 treatment inhibited CSDS-induced production of IL-6, TNF-α and IL-1β, decreased the expression of iNOS, COX2, and caspase-9 and -3, and inhibited microglial activation (Iba1) in the hippocampus. Rg1 was found to significantly downregulate p-JNK1/2 and p-P38 MAPK levels, upregulate p-ERK1/2 levels and inhibit the expression of phosphorylated NF-κB in the hippocampus. Meanwhile, Rg1 regulated SIRT1 and decreased the levels of acetylated p65 (ac-p65) in the hippocampus. Moreover, the reduction in adult hippocampal neurogenesis in CSDS mice was reversed by Rg1 treatment. In conclusion, our findings suggest that Rg1 prevents depressive-like behavior in CSDS-exposed mice, partially through the downregulation of hippocampal neuroinflammation and the upregulation of adult hippocampal neurogenesis and that these changes presumably occur through increased anti-inflammatory effects and the inhibition of proinflammatory cytokine and neurotoxic mediator expression and microglial activation, which is partly mediated by the regulation of the MAPK and SIRT1 signaling pathways and results in the inhibition of NF-κB transcriptional activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call