Abstract
Ginsenoside-Rb2 (Rb2) is a 20(S)-protopanaxadiol glycoside extracted from ginseng possessing various bioactivities which has drawn considerable interest regarding the area of bone metabolism. However, the effect of Rb2 on osteoclast differentiation remains unknown. In this study, we aimed to investigate the potential role of Rb2 in regulating osteoclast differentiation and the underlying molecular mechanisms. Osteoclast differentiation was induced by receptor activator nuclear factor-kappaB (NF-κB) ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) in mouse RAW 264.7 cells. The results showed that Rb2 dose-dependently inhibited the formation of the tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells and TRAP expression. Furthermore, Rb2 promoted osteoprotegerin expression and bone resorption. The expression of osteoclast marker genes including nuclear factor of activated T cells c1 (NFATc1), c-Fos, OSCAR, and cathepsin K were also markedly inhibited by Rb2 treatment. Moreover, Rb2 significantly inhibited the RANKL-induced NF-κB activation. In addition, Rb2 also markedly suppressed the activation of signal transducer and activator of transcription protein 3 (STAT3) signaling pathway. Interestingly, the knockdown of STAT3 significantly strengthened the inhibitory effect of Rb2 on osteoclast differentiation. Taken together, our study suggests that Rb2 inhibits osteoclast differentiation associated with blocking NF-κB and STAT3 signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.