Abstract

Mounting evidence suggests that an excess of matrix metalloproteinase-13 (MMP-13) plays an important role in the breakdown of extracellular matrix in osteoarthritis (OA). Here, the effects of ginsenoside Rb1 (GRb1) on the expression of MMP-13 in IL-1β-induced SW 1353 chondrosarcoma cells and an experimental rat model of OA induced by anterior cruciate ligament transection (ACLT) were investigated. SW1353 chondrosarcoma cells were pretreated with or without GRb1 and Notch signaling pathway inhibitor, DAPT, then were stimulated with IL-1β. In rats, experimental OA was induced by ACLT. These rats then received intra-articular injections of vehicle, an inhibitor of γ-secretase, DAPT, and/or GRb1. Expression of MMP-13, collagen type II (CII), Notch1, and jagged 1 (JAG1) were verified by western blotting and immunohistochemistry. In addition, levels of MMP-13 mRNA were detected using quantitative real-time PCR. In histological analyses, treatment with DAPT reduced the number of cartilage lesions present and the expressions of MMP-13, CII, Notch1, and JAG1. In addition, treatment with GRb1 was associated with lower levels of Notch1 and JAG1 in both IL-1β-induced SW1353 chondrosarcoma cells and in the rat OA model. Furthermore, the suppressive effect of GRb1 on MMP-13 was greater than that exhibited by the signaling pathway inhibitor. In conclusion, GRb1 inhibits MMP-13 through down-regulating Notch signaling pathway in OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call