Abstract

BackgroundThere is currently no specific therapeutic drug available for heart failure in clinical practice. Numerous studies have validated the efficacy of Ginsenoside Rb1, an active component found in various herbal remedies used for heart failure treatment, in effectively ameliorating myocardial ischemia. However, the precise mechanism of action and molecular targets of Ginsenoside Rb1 remain unclear. PurposeThis study aims to explore the molecular mechanisms through which Ginsenoside Rb1 synergistically modulates the gut flora and mitochondrial quality control network in heart failure by targeting the DUSP-1-TMBIM-6-VDAC1 axis. Study designThis study utilized DUSP-1/VDAC1 knockout (DUSP-1-/-/VDAC1-/-) and DUSP-1/VDAC1 transgenic (DUSP-1+/+/VDAC1+/+) mouse models of heart failure, established through Transverse Aortic Constriction (TAC) surgery and genetic modification techniques. The mice were subsequently subjected to treatment with Ginsenoside Rb1. MethodsA series of follow-up multi-omics analyses were conducted, including assessments of intestinal flora, gene transcription sequencing, single-cell databases, and molecular biology assays of primary cardiomyocytes, to investigate the mechanism of action of Ginsenoside Rb1. ResultsGinsenoside Rb1 was found to have multiple regulatory mechanisms on mitochondria. Notably, DUSP-1 was discovered to be a crucial molecular target of Ginsenoside Rb1, controlling both intestinal flora and mitochondrial function. The regulatory effects of DUSP-1 on inflammation and mitochondrial quality control were mediated by changes in TMBIM-6 and VDAC1. Furthermore, NLRP3-mediated inflammatory responses were found to interact with mitochondrial quality control, exacerbating myocardial injury under stress conditions. Ginsenoside Rb1 modulated the DUSP-1-TMBIM-6-VDAC1 axis, inhibited the release of pro-inflammatory factors, altered the structural composition of the gut flora, and protected impaired heart function. These effects indirectly influenced the crosstalk between inflammation, mitochondria, and gut flora. ConclusionThe DUSP-1-TMBIM-6-VDAC1 axis, an upstream pathway regulated by Ginsenoside Rb1, is a profound mechanism through which Ginsenoside Rb1 improves cardiac function in heart failure by modulating inflammation, mitochondria, and gut flora.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.