Abstract
BackgroundPsoriasis is a chronic inflammatory skin disease characterized by keratinocyte hyperproliferation. Ginsenoside compound K (CK), a bioactive metabolite of ginseng, modulates various skin disorders with an impact on keratinocyte biology. However, the effect of Ginsenoside CK in psoriasis has not been explored. ObjectiveOur aim was to investigate whether ginsenoside CK could affect the homeostasis of keratinocytes and their expression of psoriasis-associated antimicrobial protein regenerating islet-derived protein 3-alpha (REG3A) and its murine ortholog RegIIIγ. We further explored the therapeutic potential of ginsenoside CK in imiquimod (IMQ)-induced psoriasis-like dermatitis. MethodsThe effects of ginsenoside CK in cell growth and apoptosis of human keratinocytes were measured by MTT assay and flow cytometry, respectively. Bax levels were evaluated by Western blot in HaCaT cells following ginsenoside CK stimulation. REG3A levels were assessed by RT-PCR and Western blot in human keratinocytes following interleukin (IL)-36γ and ginsenoside CK co-simulation. Utilizing IMQ-induced psoriasis mouse model, the therapeutic effects of 0.1% and 1% ginsenoside CK cream were assessed by skin thicknesses and histological examinations, and RegIIIγ level in the lesional skin was detected by Western blot and immunofluorescence. ResultsGinsenoside CK prohibited human keratinocyte proliferation but did not affect their apoptosis. Moreover, it inhibited IL-36γ-induced REG3A expression in HaCaT cells. Ginsenoside CK alleviated imiquimod-induced psoriasis-like hyperkeratosis and reduced RegIIIγ expression in the keratinocytes from lesional skin. ConclusionGinsenoside CK ameliorated IMQ-induced psoriasis-like dermatitis possibly through inhibiting REG3A/RegIIIγ expression in keratinocytes, which highlighted a therapeutic potential of ginsenoside CK in psoriasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.