Abstract

BackgroundGinseng polysaccharides (GP) have been found to exhibit significant immune regulatory effects, making them a promising candidate for treating immune-related diseases. However, their mechanism of action in immune liver injury is not yet clear. The innovation of this study lies in exploring the mechanism of action of ginseng polysaccharides (GP) in immune liver injury. While GP has been previously identified for its immune regulatory effects, this study aims to provide a clearer understanding of its therapeutic potential for immune-related liver diseases. PurposeThe purpose of this study is to characterize low molecular weight gingeng polysaccharides (LGP), investigate their effect on ConA-induced autoimmune hepatitis (AIH), and identify their potential molecular mechanisms. MethodsLGP was extracted and purified using water-alcohol precipitation, DEAE-52 cellulose column, and Sephadex G200. And its structure was analyzed. It was then evaluated for anti-inflammatory and hepatoprotective effects in ConA-induced cells and mice, assessing cellular viability and inflammation with Cell Counting Kit-8 (CCK-8), Reverse Transcription-polymerase Chain Reaction (RT-PCR), and Western Blot, and hepatic injury, inflammation, and apoptosis with various biochemical and staining methods. ResultsLGP is a polysaccharide composed of glucose (Glu), galactose (Gal), and arabinose (Ara), with a molar ratio of 12.9:1.6:1.0. LGP has a low crystallinity amorphous powder structure and is free from impurities. LGP enhances cell viability and reduces inflammatory factors in ConA-induced RAW264.7 cells and inhibits inflammation and hepatocyte apoptosis in ConA-induced mice. LGP inhibits Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Toll-like receptors/Nuclear factor kappa B (TLRs/NF-κB) signaling pathways in vitro and in vivo to treat AIH. ConclusionsLGP was successfully extracted and purified, exhibiting potential as a treatment for ConA-induced autoimmune hepatitis due to its ability to inhibit the PI3K/AKT and TLRs/NF-κB signaling pathways and protect liver cells from damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call