Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is a condition that can lead to long-term cognitive, motor, and behavioral impairments in newborns. Although brain hypothermia therapy is currently the standard treatment for HIE, it does not provide complete neuroprotection. As a result, there is a need to explore additional therapies to enhance treatment outcomes. This study aims to investigate the potential role of Ginkgolide B (GB) in promoting neuroplasticity and facilitating spontaneous recovery after HIE. In this study, we employed a neonatal rat model of HIE to investigate the effects of GB on spontaneous recovery. GB treatment was initiated 24 h after hypoxia and administered continuously for a duration of 14 days. We evaluated several outcome measures after the treatment period, including spontaneous behavioral recovery and brain repair. Additionally, we quantified the levels of netrin-1 in both plasma and the peri-ischemic zone after the occurrence of HIE. We found that GB treatment significantly facilitated spontaneous behavioral recovery in the HIE pups. Furthermore, cognitive function was restored, and brain tissue repair had a noticeable acceleration. We observed increased cell proliferation in the subventricular, stratum, and subgranular zones. Of particular interest, we observed elevated levels of netrin-1 in both plasma and the ischemic penumbra following GB treatment. Our findings suggest that GB promotes neuroplasticity and enhances spontaneous recovery in newborns affected by HIE. The observed upregulation of netrin-1 may be crucial in mediating these effects. These results highlight the promising potential of GB as a post-HIE therapy, particularly in enhancing spontaneous recovery and improving long-term outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.