Abstract

Osteoporosis is characterized by reductions in bone mass, which could be attributed to the dysregulation of bone homeostasis, such as the loss of balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Elevated levels of oxidative stress increase bone resorption by promoting osteoclastogenesis and inhibiting the osteogenesis. Ginkgolide B (GB), a small natural molecule from Ginkgo biloba, has been reported to possess pharmacological activities by regulating reactive oxygen species (ROS) in aging-related degenerative diseases. Herein, we assessed the therapeutic effects of GB on the bone phenotypes of mice with osteoporosis induced by (I) aging, (II) ovariectomy, and (III) glucocorticoids. In all three animal models, oral gavage of GB significantly improved bone mass consistent with the increase in the OPG-to-RANKL ratio. In the in vitro experiments, GB promoted osteogenesis in aged mesenchymal stem cells (MSCs) and repressed osteoclastogenesis in aged macrophages by reducing ROS. The serum protein profile in GB-treated aged mice revealed moderate rejuvenating effects; signaling pathways associated with ROS were also regulated. The anabolic and anti-catabolic effects of GB were illustrated by the reduction in ROS. Our results indicate that GB is effective in treating osteoporosis. The use of GB in patients with osteoporosis is worthy of further clinical investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.