Abstract

To improve our understanding of the effects of standardized extract of Ginkgo biloba (EGb) as a cognitive enhancer, we investigated the conditioned lick suppression-induced expression (mRNA and protein) of the GluN2B-containing N-methyl-D-aspartic acid receptor (GluN2B-NMDAR), serotonin (5-HT) 1A receptor (5-HT1AR), gamma-aminobutyric acid type A receptor (GABAAR) and glial fibrillary acidic protein (GFAP) in the dorsal hippocampal formation (dHF) of untreated and EGb-treated (0.25, 0.5 and 1.0 g.kg−1) groups of rats. To substantiate our data, we analysed the molecular changes in dHF following treatment with vehicle, with agonists or antagonists of GABAAR, GluN2B-NMDAR and 5-HT1AR or with one of these antagonists prior to EGb and fear memory acquisition. Additionally, we performed a pharmacological analysis of the drug-receptor-receptor interactions and their supplemental role in fear memory by blocking individual receptors and analysed the possible changes in expression level with each of the other receptors in the study as well as astrocytes. Our data show for the first time that EGb treatment not only upregulated GluN2B, GABAAR-α5, and GFAP compared with the control but also differentially upregulated GABAAR-α1 in the dHF and 5HT1AR in the CA3. We found that the activation of GABAARs (diazepam) and the inactivation of GluN2B-NMDARs (Ro25–6981) or 5-HT1AR ((S)-WAY100135) resulted in memory impairment. Further, higher doses of EGb treatment reversed the effect of blocking GluN2B (P < 0.001) and 5-HT1AR (P < 0.001). Here, treatment with Ro25–6981 + EGb or (S)-WAY100135 + EGb prevented the impairment of the acquisition of lick suppression in association with the upregulation or prevention of the downregulation of Grin2b expression as well as the expression of GluN2B-NMDA and/or α1 and α5 subunit-containing GABAAR in the CA1 (P < 0.0001). Our data are in line with previous findings concerning the necessity of GluN2B for fear memory formation and add to the current knowledge of the role of the GABAAR-α1 and -α5 subunits and of GluN2B as a target of cognitive enhancers. Furthermore, our data show that these receptors play a complementary role in controlling the neural circuitry in the dHF that seems to be essential to conditioned lick suppression and the modulatory effects of EGb.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.