Abstract

Salinity is a major ecological factor in the marine environment, and extremely important for the survival, development, and growth of fish. In this study, gill transcriptomes were examined by high-throughput sequencing at three different salinities (12ppt as low salinity, 22ppt as control salinity, and 32ppt as high salinity) in an importantly economical fish silvery pomfret. A total of 187 genes were differentially expressed, including 111 up-regulated and 76 down-regulated transcripts in low-salinity treatment group and 107 genes differentially expressed, including 74 up-regulated and 33 down-regulated transcripts in high-salinity treatment group compared with thecontrol group, respectively. Some pathways including NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor pathway, cardiac muscle contraction, and vascular smooth muscle contraction were significantly enriched. qPCR analysis further confirmed that mRNA expression levels of immune (HSP90A, IL-1β, TNFα, TLR2, IP-10, MIG, CCL19, and IL-11) and ion transport-related genes (WNK2, NPY2R, CFTR, and SLC4A2) significantly changed under salinity stress. Low salinity stress caused more intensive expression changes of immune-related genes than high salinity. These results imply that salinity stress may affect immune function in addition to regulating osmotic pressure in silvery pomfret.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call