Abstract

This study firstly aimed to test the impact of dietary isoleucine (Ile) on tight junction protein, inflammation, apoptosis, antioxidant defense and related signaling molecule gene expression in the gill of fish. Young grass carp (Ctenopharyngodon idella) (weighing 256.8 ± 3.5 g) were fed six diets containing graded levels of Ile, namely, 3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg diet for 8 weeks. The results firstly revealed that Ile deficiency down-regulated the mRNA expressions of claudin-3, claudin-b, claudin-c, occludin and zonula occludens-1 (ZO-1) and up-regulated the mRNA expression of claudin-12, which led to the intercellular structure damage of fish gill. These effects were partially ascribed to the up-regulation of pro-inflammatory cytokines [interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor-α (TNF-α)] mRNA expressions that referring to up-regulated nuclear factor κB P65 (NF-κB P65) mRNA expression and down-regulated inhibitor factor κBα (IκBα) mRNA expression, and the down-regulation of anti-inflammatory cytokines [interleukin 10 (IL-10) and transforming growth factor β1 (TGF-β1)] mRNA expressions that referring to the down-regulated TOR and S6K1 mRNA expression. Interestingly, no change in claudin 15 mRNA level was observed among every treatment. At the same time, the results firstly indicated that Ile deficiency also resulted in the cellular structure damage of fish gill: (1) DNA fragmentation partially due to the up-regulation of caspase-3, caspase-8 and caspase-9 mRNA expression; (2) increase in protein carbonyl (PC), malondialdehyde (MDA) and ROS contents, which may be partially attributed to the impaired antioxidant defense [indicated by decreased glutathione (GSH) level and depressed anti-superoxide anion (ASA), anti-hydroxyl radical (a-HR), copper/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and glutathione peroxidase (GPx) activities] that referring to the down-regulation of corresponding antioxidant enzyme mRNA expressions and the related signaling molecules Nrf2 mRNA expression. Ile excess caused similar negative effects that observed in Ile-deficient group, whereas these negative effects were reversed with appropriate Ile supplementation. In conclusion, our results indicated that Ile deficiency or excess disrupted the structural integrity of fish gill, partially due to the trigger of apoptosis, the impairment of antioxidant defense, and the regulation of tight junction protein, inflammatory cytokines, apoptosis-related, antioxidant enzymes and related signaling molecules mRNA expressions in the fish gill.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call