Abstract
The classical Gill's stability problem for stationary and parallel buoyant flow in a vertical porous slab with impermeable and isothermal boundaries kept at different temperatures is reconsidered from a different perspective. A three-layer slab is studied instead of a homogeneous slab as in Gill's problem. The three layers have a symmetric configuration where the two external layers have a high thermal conductivity, while the core layer has a much lower conductivity. A simplified model is set up where the thermal conductivity ratio between the external layers and the internal core is assumed as infinite. It is shown that a flow instability in the sandwiched porous slab may arise with a sufficiently large Rayleigh number. It is also demonstrated that this instability coincides with that predicted in a previous analysis for a homogeneous porous layer with permeable boundaries, by considering the limiting case where the permeability of the external layers is much larger than that of the core layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.